Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Microbiol Spectr ; : e0201222, 2022 Nov 30.
Article in English | MEDLINE | ID: covidwho-2137462

ABSTRACT

The COVID-19 pandemic has led to the commercialization of many antigen-based rapid diagnostic tests (Ag-RDTs), requiring independent evaluations. This report describes the clinical evaluation of the Novel Coronavirus 2019-nCoV Antigen Test (Colloidal Gold) (Beijing Hotgen Biotech Co., Ltd.), at two sites within Brazil and one in the United Kingdom. The collected samples (446 nasal swabs from Brazil and 246 nasopharyngeal samples from the UK) were analyzed by the Ag-RDT and compared to reverse transcription-quantitative PCR (RT-qPCR). Analytical evaluation of the Ag-RDT was performed using direct culture supernatants of SARS-CoV-2 strains from the wild-type (B.1), Alpha (B.1.1.7), Delta (B.1.617.2), Gamma (P.1), and Omicron (B.1.1.529) lineages. An overall sensitivity and specificity of 88.2% (95% confidence interval [CI], 81.3 to 93.3) and 100.0% (95% CI, 99.1 to 100.0), respectively, were obtained for the Brazilian and UK cohorts. The analytical limit of detection was determined as 1.0 × 103 PFU/mL (Alpha), 2.5 × 102 PFU/mL (Delta), 2.5 × 103 PFU/mL (Gamma), and 1.0 × 103 PFU/mL (Omicron), giving a viral copy equivalent of approximately 2.1 × 104 copies/mL, 9.0 × 105 copies/mL, 1.7 × 106 copies/mL, and 1.8 × 105 copies/mL for the Ag-RDT, respectively. Overall, while a higher sensitivity was claimed by the manufacturers than that found in this study, this evaluation finds that the Ag-RDT meets the WHO minimum performance requirements for sensitivity and specificity of COVID-19 Ag-RDTs. This study illustrates the comparative performance of the Hotgen Ag-RDT across two global settings and considers the different approaches in evaluation methods. IMPORTANCE Since the beginning of the SARS-CoV-2 pandemic, we have witnessed growing numbers of antigen rapid diagnostic tests (Ag-RDTs) being brought to market. In the United Kingdom, this was somewhat controlled indirectly as the government offered free tests from a small number of companies. However, as this has now ceased, individuals are responsible for their own acquisition of test kits. Similarly in Brazil, as of January 2022, pharmacies and other health care retailers are permitted to sell Ag-RDTs directly to the community. Many of these Ag-RDTs have not been externally evaluated, and results are not readily available to the public. Thus, there is now a need for a transparent evaluation of Ag-RDTs with both analytical and clinical evaluation. We present an independent review of the Novel Coronavirus 2019-nCoV Antigen Test (Colloidal Gold) (Beijing Hotgen Biotech Co., Ltd.), at two sites within Brazil and one in the United Kingdom.

3.
Frontiers in microbiology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1989458

ABSTRACT

Severe acute respiratory syndrome-related coronavirus (SARS-CoV-2) transmission occurs even among fully vaccinated individuals;thus, prompt identification of infected patients is central to control viral circulation. Antigen rapid diagnostic tests (Ag-RDTs) are highly specific, but sensitivity is variable. Discordant RT-qPCR vs. Ag-RDT results are reported, raising the question of whether negative Ag-RDT in positive RT-qPCR samples could imply the absence of infectious viruses. To study the relationship between negative Ag-RDT results with virological, molecular, and serological parameters, we selected a cross-sectional and a follow-up dataset and analyzed virus culture, subgenomic RNA quantification, and sequencing to determine infectious viruses and mutations. We demonstrated that RT-qPCR positive while SARS-CoV-2 Ag-RDT negative discordant results correlate with the absence of infectious virus in nasopharyngeal samples. A decrease in sgRNA detection together with an expected increase in detectable anti-S and anti-N IgGs was also verified in these samples. The data clearly demonstrate that a negative Ag-RDT sample is less likely to harbor infectious SARS-CoV-2 and, consequently, has a lower transmissible potential.

4.
Microbiol Spectr ; 10(3): e0125022, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1874516

ABSTRACT

Community testing is a crucial tool for the early identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and transmission control. The emergence of the highly mutated Omicron variant (B.1.1.529) raised concerns about its primary site of replication, impacting sample collection and its detectability by rapid antigen tests. We tested the performance of the Panbio antigen rapid diagnostic test (Ag-RDT) using nasal and oral specimens for COVID-19 diagnosis in 192 symptomatic individuals, with quantitative reverse transcription-PCR (RT-qPCR) of nasopharyngeal samples as a control. Variant of concern (VOC) investigation was performed with the 4Plex SARS-CoV-2 screening kit. The SARS-CoV-2 positivity rate was 66.2%, with 99% of the positive samples showing an amplification profile consistent with that of the Omicron variant. Nasal Ag-RDT showed higher sensitivity (89%) than oral (12.6%) Ag-RDT. Our data showed good performance of the Ag-RDT in a pandemic scenario dominated by the Omicron VOC. Furthermore, our data also demonstrated that the Panbio COVID-19 antigen rapid diagnostic test does not provide good sensitivity with oral swabs for Omicron Ag-RDT detection. IMPORTANCE This study showed that the antigen rapid test for COVID19 worked fine using nasal swabs when it was utilized in patients infected with the Omicron variant, showing a concordance with PCR in 93% of patients tested. The nasal swab yielded more reliable results than the oral swab when an antigen rapid diagnosis test (the Panbio COVID-19 antigen rapid diagnostic test) was used in patients infected with the Omicron variant.


Subject(s)
COVID-19 , COVID-19/diagnosis , COVID-19 Testing , Diagnostic Tests, Routine , Humans , SARS-CoV-2/genetics , Sensitivity and Specificity
5.
Mem Inst Oswaldo Cruz ; 116: e210176, 2022.
Article in English | MEDLINE | ID: covidwho-1725021

ABSTRACT

BACKGROUND: During routine Coronavirus disease 2019 (COVID-19) diagnosis, an unusually high viral load was detected by reverse transcription real-time polymerase chain reaction (RT-qPCR) in a nasopharyngeal swab sample collected from a patient with respiratory and neurological symptoms who rapidly succumbed to the disease. Therefore we sought to characterise the infection. OBJECTIVES: We aimed to determine and characterise the etiological agent responsible for the poor outcome. METHODS: Classical virological methods, such as plaque assay and plaque reduction neutralisation test combined with amplicon-based sequencing, as well as a viral metagenomic approach, were performed to characterise the etiological agents of the infection. FINDINGS: Plaque assay revealed two distinct plaque phenotypes, suggesting either the presence of two severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains or a productive coinfection of two different species of virus. Amplicon-based sequencing did not support the presence of any SARS-CoV-2 genetic variants that would explain the high viral load and suggested the presence of a single SARS-CoV-2 strain. Nonetheless, the viral metagenomic analysis revealed that Coronaviridae and Herpesviridae were the predominant virus families within the sample. This finding was confirmed by a plaque reduction neutralisation test and PCR. MAIN CONCLUSIONS: We characterised a productive coinfection of SARS-CoV-2 and Herpes simplex virus 1 (HSV-1) in a patient with severe symptoms that succumbed to the disease. Although we cannot establish the causal relationship between the coinfection and the severity of the clinical case, this work serves as a warning for future studies focused on the interplay between SARS-CoV-2 and HSV-1 coinfection and COVID-19 severity.


Subject(s)
COVID-19 , Coinfection , Herpesvirus 1, Human , Herpesvirus 1, Human/genetics , Humans , Real-Time Polymerase Chain Reaction , SARS-CoV-2
7.
Braz J Infect Dis ; 25(5): 101630, 2021.
Article in English | MEDLINE | ID: covidwho-1604138

ABSTRACT

INTRODUCTION: In the current standard of care (SoC) RT-PCR method for COVID-19, the patient's swab was extracted in viral transport media (VTM). For the Panbio™ COVID-19 Ag Rapid Test, the patient swab is flushed out in extraction buffer, of which a small fraction is used for testing, leaving more than half the sample unused. This study was designed to show that RT-PCR results from the residual sample of the Panbio™ COVID-19 Ag Rapid Test (called Novel RT-PCR) are not worse than the SoC RT-PCR result. METHODS: The study was performed using (1) dilution series of five patient samples, and (2) 413 patient samples comparing SOC versus Novel RT-PCR results. RESULTS: For the dilution series samples, all tested positive by both methods. The bias between Ct values of Novel RT-PCR and SoC RT-PCR did not exceed 3.00 Ct using primers N1 and N2. A total of 413 COVID symptomatic patients seeking COVID testing were tested, of which 89 patients tested positive and 324 tested negative with SoC RT-PCR. In 324 patients who tested negative with SoC RT-PCR, 323 tested negative with Novel RT-PCR, and one (1) tested positive. Out of 89 who tested positive with SoC RT-PCR, 80 tested positive with the Novel RT-PCR, and nine patients showed a negative test result. The Overall Percent Agreement for the 413 valid patient sample pairs was 97.5 [95% CI 97 to 98]. CONCLUSION: The study demonstrated that the performance of the Novel RT-PCR method is acceptable compared to the SoC RT-PCR method and can be a useful tool to perform RT-PCR without the need for new swab collections.


Subject(s)
COVID-19 , Antigens, Viral , COVID-19 Testing , Humans , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Sensitivity and Specificity
8.
EBioMedicine ; 75: 103774, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1587927

ABSTRACT

BACKGROUND: Antigen-detecting rapid diagnostic tests (Ag-RDTs) for SARS-CoV-2 are important diagnostic tools. We assessed clinical performance and ease-of-use of seven Ag-RDTs in a prospective, manufacturer-independent, multi-centre cross-sectional diagnostic accuracy study to inform global decision makers. METHODS: Unvaccinated participants suspected of a first SARS-CoV-2 infection were recruited at six sites (Germany, Brazil). Ag-RDTs were evaluated sequentially, with collection of paired swabs for routine reverse transcription polymerase chain reaction (RT-PCR) testing and Ag-RDT testing. Performance was compared to RT-PCR overall and in sub-group analyses (viral load, symptoms, symptoms duration). To understandusability a System Usability Scale (SUS) questionnaire and ease-of-use (EoU) assessment were performed. FINDINGS: 7471 participants were included in the analysis. Sensitivities across Ag-RDTs ranged from 70·4%-90·1%, specificities were above 97·2% for all Ag-RDTs but one (93·1%).Ag-RDTs, Mologic, Bionote, Standard Q, showed diagnostic accuracy in line with WHO targets (> 80% sensitivity, > 97% specificity). All tests showed high sensitivity in the first three days after symptom onset (≥87·1%) and in individuals with viral loads≥ 6 log10SARS-CoV2 RNA copies/mL (≥ 88·7%). Usability varied, with Rapigen, Bionote and Standard Q reaching very good scores; 90, 88 and 84/100, respectively. INTERPRETATION: Variability in test performance is partially explained by variable viral loads in population evaluated over the course of the pandemic. All Ag-RDTs reach high sensitivity early in the disease and in individuals with high viral loads, supporting their role in identifying transmission relevant infections. For easy-to-use tests, performance shown will likely be maintained in routine implementation. FUNDING: Ministry of Science, Research and Arts, State of Baden-Wuerttemberg, Germany, internal funds from Heidelberg University Hospital, University Hospital Charité - Universitätsmedizin Berlin, UK Department of International Development, WHO, Unitaid.


Subject(s)
Antigens, Viral/immunology , COVID-19 Serological Testing , COVID-19 , Point-of-Care Systems , SARS-CoV-2/immunology , Adult , COVID-19/diagnosis , COVID-19/immunology , Female , Humans , Male , Middle Aged , Sensitivity and Specificity
9.
Microbiol Spectr ; 9(3): e0085521, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1522920

ABSTRACT

Current guidelines for patient isolation in COVID-19 cases recommend a symptom-based approach, averting the use of control real-time reverse transcription PCR (rRT-PCR) testing. However, we hypothesized that patients with persistently positive results by RT-PCR for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could be potentially infectious for a prolonged time, even if immunocompetent and asymptomatic, which would demand a longer social isolation period than presently recommended. To test this hypothesis, 72 samples from 51 mildly symptomatic immunocompetent patients with long-lasting positive rRT-PCR results for SARS-CoV-2 were tested for their infectiousness in cell culture. The serological response of samples from those patients and virus genomic integrity were also analyzed. Infectious viruses were successfully isolated from 34.38% (22/64) of nasopharynx samples obtained 14 days or longer after symptom onset. Indeed, we observed successful virus isolation up to 128 days. Complete SARS-COV-2 genome integrity was demonstrated, suggesting the presence of replication-competent viruses. No correlation was found between the isolation of infectious viruses and rRT-PCR cycle threshold values or the humoral immune response. These findings call attention to the need to review current isolation guidelines, particularly in scenarios involving high-risk individuals. IMPORTANCE In this study, we evaluated mildly symptomatic immunocompetent patients with long-lasting positive rRT-PCR results for SARS-CoV-2. Infectious viruses were successfully isolated in cell cultures from nasopharynx samples obtained 14 days or longer after symptom onset. Indeed, we observed successful virus isolation for up to 128 days. Moreover, SARS-CoV-2 genome integrity was demonstrated by sequencing, suggesting the presence of replication-competent viruses. These data point out the risk of continuous SARS-CoV-2 transmission from patients with prolonged detection of SARS-CoV-2 in the upper respiratory tract, which has important implications for current precaution guidelines, particularly in settings where vulnerable individuals may be exposed (e.g., nursing homes and hospitals).


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Adult , COVID-19/diagnosis , Female , Genome, Viral , Genomics , Humans , Male , Middle Aged , Nasopharynx/virology , Patient Isolation , Viral Load , Viral Proteins/isolation & purification , Virus Shedding
10.
Virus Evol ; 7(2): veab087, 2021.
Article in English | MEDLINE | ID: covidwho-1493957

ABSTRACT

The emergence and widespread circulation of severe acute respiratory syndrome coronavirus 2 variants of concern (VOCs) or interest impose an enhanced threat to global public health. In Brazil, one of the countries most severely impacted throughout the pandemic, a complex dynamics involving variants co-circulation and turnover events has been recorded with the emergence and spread of VOC Gamma in Manaus in late 2020. In this context, we present a genomic epidemiology investigation based on samples collected between December 2020 and May 2021 in the second major Brazilian metropolis, Rio de Janeiro. By sequencing 244 novel genomes through all epidemiological weeks in this period, we were able to document the introduction and rapid dissemination of VOC Gamma in the city, driving the rise of the third local epidemic wave. Molecular clock analysis indicates that this variant has circulated locally since the first weeks of 2021 and only 7 weeks were necessary for it to achieve a frequency above 70 per cent, consistent with rates of growth observed in Manaus and other states. Moreover, a Bayesian phylogeographic reconstruction indicates that VOC Gamma spread throughout Brazil between December 2020 and January 2021 and that it was introduced in Rio de Janeiro through at least 13 events coming from nearly all regions of the country. Comparative analysis of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) cycle threshold (Ct) values provides further evidence that VOC Gamma induces higher viral loads (N1 target; mean reduction of Ct: 2.7, 95 per cent confidence interval = ± 0.7). This analysis corroborates the previously proposed mechanistic basis for this variant-enhanced transmissibility and distinguished epidemiological behavior. Our results document the evolution of VOC Gamma and provide independent assessment of scenarios previously studied in Manaus, therefore contributing to the better understanding of the epidemiological dynamics currently being surveyed in other Brazilian regions.

11.
Virus Evol ; 7(2): veab078, 2021 Sep 29.
Article in English | MEDLINE | ID: covidwho-1467409

ABSTRACT

Long-term infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represents a challenge to virus dispersion and the control of coronavirus disease 2019 (COVID-19) pandemic. The reason why some people have prolonged infection and how the virus persists for so long are still not fully understood. Recent studies suggested that the accumulation of intra-host single nucleotide variants (iSNVs) over the course of the infection might play an important role in persistence as well as emergence of mutations of concern. For this reason, we aimed to investigate the intra-host evolution of SARS-CoV-2 during prolonged infection. Thirty-three patients who remained reverse transcription polymerase chain reaction (RT-PCR) positive in the nasopharynx for on average 18 days from the symptoms onset were included in this study. Whole-genome sequences were obtained for each patient at two different time points. Phylogenetic, populational, and computational analyses of viral sequences were consistent with prolonged infection without evidence of coinfection in our cohort. We observed an elevated within-host genomic diversity at the second time point samples positively correlated with cycle threshold (Ct) values (lower viral load). Direct transmission was also confirmed in a small cluster of healthcare professionals that shared the same workplace by the presence of common iSNVs. A differential accumulation of missense variants between the time points was detected targeting crucial structural and non-structural proteins such as Spike and helicase. Interestingly, longitudinal acquisition of iSNVs in Spike protein coincided in many cases with SARS-CoV-2 reactive and predicted T cell epitopes. We observed a distinguishing pattern of mutations over the course of the infection mainly driven by increasing A→U and decreasing G→A signatures. G→A mutations may be associated with RNA-editing enzyme activities; therefore, the mutational profiles observed in our analysis were suggestive of innate immune mechanisms of the host cell defense. Therefore, we unveiled a dynamic and complex landscape of host and pathogen interaction during prolonged infection of SARS-CoV-2, suggesting that the host's innate immunity shapes the increase of intra-host diversity. Our findings may also shed light on possible mechanisms underlying the emergence and spread of new variants resistant to the host immune response as recently observed in COVID-19 pandemic.

12.
Sci Rep ; 11(1): 9658, 2021 05 06.
Article in English | MEDLINE | ID: covidwho-1219902

ABSTRACT

ACE2 and TMPRSS2 are key players on SARS-CoV-2 entry into host cells. However, it is still unclear whether expression levels of these factors could reflect disease severity. Here, a case-control study was conducted with 213 SARS-CoV-2 positive individuals where cases were defined as COVID-19 patients with respiratory distress requiring oxygen support (N = 38) and controls were those with mild to moderate symptoms of the disease who did not need oxygen therapy along the entire clinical course (N = 175). ACE2 and TMPRSS2 mRNA levels were evaluated in nasopharyngeal swab samples by RT-qPCR and logistic regression analyzes were applied to estimate associations with respiratory outcomes. ACE2 and TMPRSS2 levels positively correlated with age, which was also strongly associated with respiratory distress. Increased nasopharyngeal ACE2 levels showed a protective effect against this outcome (adjOR = 0.30; 95% CI 0.09-0.91), while TMPRSS2/ACE2 ratio was associated with risk (adjOR = 4.28; 95% CI 1.36-13.48). On stepwise regression, TMPRSS2/ACE2 ratio outperformed ACE2 to model COVID-19 severity. When nasopharyngeal swabs were compared to bronchoalveolar lavages in an independent cohort of COVID-19 patients under mechanical ventilation, similar expression levels of these genes were observed. These data suggest nasopharyngeal TMPRSS2/ACE2 as a promising candidate for further prediction models on COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Respiratory Distress Syndrome/genetics , Serine Endopeptidases/genetics , Adult , Aged , COVID-19/complications , COVID-19/diagnosis , COVID-19/therapy , Case-Control Studies , Down-Regulation , Female , Humans , Male , Middle Aged , Nasopharynx/metabolism , RNA, Messenger/genetics , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL